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Abstract

This paper introduces multilevel extensions for the general diagnostic model (GDM) following

recent developments on extensions of latent class analysis (LCA) to hierarchical models. The GDM

is based on LCA as well as discrete latent trait models and may be viewed as a general modeling

framework for con�rmatory multidimensional item response models.

The multilevel extensions presented in this paper enable one to check the impact of clustered

data, such as data for students within schools in large scale educational surveys, on the structural

parameter estimates of the GDM. Moreover, the multilevel version of the GDM allows study of

di�erences in skill distributions across these clusters.

Key words: Latent class analysis, multilevel extensions, item response models, diagnostic models,

logistic models
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1 Introduction

This paper introduces a hierarchical extension of the general diagnostic model (GDM; von

Davier, in press-a) similar to extensions for latent class analysis (LCA; Lazarsfeld & Henry, 1968)

to multilevel latent class models (Vermunt, 2003). Hierarchical extensions have also been developed

for linear models (e.g., Bryk & Raudenbush, 1992; Goldstein, 1987) as well as for Rasch-type

models (e.g., Kamata & Cheong, 2006) and more general IRT models (e.g., Fox & Glas, 2001).

The GDM is based on LCA as well as discrete latent trait models (Heinen, 1996) and may be

viewed as a general modeling framework for con�rmatory multidimensional item response models

(see von Davier, in press-b; von Davier & Rost, 2006; von Davier & Yamamoto, 2007).

The multilevel extensions presented in this paper enable one to check the impact of the

clustering of observed data, such as data for students within schools in large scale educational

surveys, on the structural parameter estimates of the GDM. Moreover, the multilevel version of

the GDM allows the study of di�erences in skill distributions across these clusters.

2 The General Diagnostic Model

Assume an I-dimensional categorical random variable ~x = (x1, . . . , xI) with xi ∈ {0, . . . ,mi}for

i ∈ {1, . . . , I}, referred to as a response vector in the following. Further assume that there are N

independent and identically distributed (i.i.d.) realizations ~x1, . . . , ~xN of this random variable ~x,

so that xni denotes the i-th component of the n-th realization ~xn. In addition, assume that there

are N unobserved realizations of a K-dimensional categorical variable, ~a = (a1, . . . , aK), so that

the vector

(~xn,~an) = (xn1, . . . , xnI , an1, . . . , anK)

exists for all n ∈ {1, . . . , N}. The data structure

(X, A) = ((~xn,~an))n=1,...,N

is referred to as the complete data, and (~xn)n=1,...,N is referred to as the observed data matrix.

Denote (~an)n=1,...,N as the latent skill or attribute patterns, which is the unobserved target of

inference.

Let P (~a) = P
(

~A = (a1, . . . , aK)
)

> 0 for all ~a denote the nonvanishing discrete count density

of ~a. Assume that the conditional discrete count density P (x1, . . . , xI | ~a) exists for all ~a. Then
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the probability of a response vector ~x can be written as

P (~x) =
∑
~a

P (~a)P (x1, . . . , xI | ~a).

2.1 Conditional Independence

So far, no assumptions have been made about the speci�c form of the conditional distribution

of ~x given ~a, other than that P (x1, . . . , xI | ~a) exists. For the general diagnostic model, local

independence (LI) of the components xi given ~a is assumed, which yields

P (x1, . . . , xI | ~a) =
I∏

i=1

pi(x = xi | ~a)

so that the probability pi(x = xi | ~a) is the one component left to be speci�ed to arrive at a model

for P (~x).

2.2 Logistic Model Speci�cation

Logistic models have widespread applications and apart from early disputes about the merits

of probit versus logit models (Berkson as cited in Cramer, 2003) have secured a prominent position

among models for categorical data. The general diagnostic model is also speci�ed as model with a

logistic link between an argument, which depends on the random variables involved and some real

valued parameters, and the probability of the observed response.

Using the above de�nitions, the GDM is de�ned as follows. Let

Q = (qik) , i = 1, . . . , I, k = 1, . . . ,K

be a binary I ×K matrix, that is qik ∈ {0, 1}. Let

(γikx) , i = 1, . . . , I, k = 1, . . . ,K, x = 1, . . . ,mi

be a cube of real valued parameters, and let βix for i = 1, . . . , I and x ∈ {0, . . . ,mi} be real valued

parameters. Then de�ne

pi(x | ~a) =
exp (βix +

∑
k γikxh(qik, ak))

1 +
∑mi

y=1 exp (βiy +
∑

k γikyh(qik, ak))
.

It is often convenient to constrain the γikx somewhat and to specify the real valued function

h(qik, ak) and the ak in a way that allows emulation of models frequently used in educational
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measurement and psychometrics. It is convenient to choose h(qik, ak) = qikak, and γikx = xγik,

which de�nes the general diagnostic model for partial credit data (Muraki, 1992).

Von Davier (2005) has shown that this model already contains several models from the areas

of item response theory (IRT; Lord & Novick, 1968), latent-class analysis (Lazarsfeld & Henry,

1968), multiple classi�cation latent-class models (Goodman, 1974; Haberman, 1979; Maris, 1999)

and diagnostic models (see, for example, von Davier, DiBello, & Yamamoto, 2006).

3 Mixture General Diagnostic Models

Von Davier (in press-b) introduced the discrete mixture distribution version of the GDM,

referred to as the MGDM. In discrete mixture models for item response data (Mislevy & Verhelst,

1990; Rost, 1990; for an overview, see von Davier & Rost, 2006), the probability of an observation

~x depends on the unobserved latent trait in the case of the GDMs, ~a, and on a subpopulation

indicator g, which is also unobserved. The rationale for mixture distribution models is that

observations from di�erent subpopulations may either di�er in their distribution of skills or in

their approach to the items (e.g., in terms of strategies employed) or both. A discrete mixture

distribution in the setup of random variables as introduced above includes an unobserved grouping

indicator gn for n = 1, . . . , N . The complete data for examinee n then becomes ( ~xn,~an, gn), of

which only ~xn is observed in mixture distribution models. In multiple group models, (~xn, gn) is

observed.

The conditional independence assumption has to be modi�ed to account for di�erences

between groups, that is

P (~x | ~a, g) = P (x1, . . . , xI | ~a, g) =
I∏

i=1

pi(x = xi | ~a, g).

Moreover, assume that the conditional probability of the components xi of ~x depends on nothing

but ~a and g, that is,

P (~x | ~a, g, z) =
I∏

i=1

pi(x = xi | ~a, g) = P (~x | ~a, g) (1)

for any random variable z. In mixture models, when the gn are not observed, the marginal

probability of a response vector ~x needs to be found, that is,

P (~x) =
∑
g

πgP (~x | g), (2)
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where P (~x | g) =
∑

~a p(~a | g)P (~x | ~a, g). The πg = P (G = g) are referred to as mixing proportions,

or class sizes. The class-speci�c probability of a response vector ~x given skill pattern ~a in class g is

then

P (~x | ~a, g) =
I∏

i=1

P (xi | ~a, g) =
I∏

i=1

[
exp (βixg +

∑
k xiγikgqikak)

1 +
∑

y exp (βiyg +
∑

k yγikgqikak)

]
. (3)

with class-speci�c item di�culties βixg. The γikg are the slope parameters relating skill k to item i

in class g.

Note that mixture models and multiple group models are two extremes, for mixtures models

no gn is observed, while for multiple group models all gn are observed. Von Davier and Yamamoto

(2004) pointed this out and described an extension of the GPCM for mixture versions, multiple

group versions, and partially observed grouping versions, where the gn information is missing only

for a portion of the sample.

One important special case of the MGDM is a model that assumes measurement invariance

across populations, which is expressed in the equality of p(~x | ~a, g) across groups, or, more formally:

P (xi | ~a, g) = p(xi | ~a, c) for all i ∈ {1, . . . , I} and all g, c ∈ {1, . . . , G}.

This assumption allows one to write the model equation without the group index g in the

conditional response probabilities, so that

P (~x) =
∑
g

πgP (~x | g) =
∑
g

πg

∑
~a

p(~a | g)
I∏

i=1

P (xi | ~a). (4)

Note that the di�erences between groups are only present in the p(~a | g), so that the skill

distribution is the only component with a condition on g in the above equation. The next section

introduces hierarchical GDM based on mixture distribution versions of the GDM.

4 Hierarchical General Diagnostic Models

Hierarchical models introduce an additional structure, often referred to as a cluster variable,

in the modeling of observed variables to account for correlations in the data. These are attributed

to the complex structure of the environment in which the data are observed. More concretely,

one standard example for clustered data is the responses to educational assessments sampled

from students within schools or classrooms. As a rather sloppy explanation, it seems plausible to

assume that students within schools are more similar than students across schools (even though

the amount to which this statement is true may depend on the educational system). Hierarchical
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models have been developed for linear models (e.g., Bryk & Raudenbush, 1992; Goldstein, 1987)

as well as for Rasch-type models (e.g., Kamata & Cheong, 2006).

For the developments presented here, the extension of the LCA to a hierarchical model (e.g.,

Vermunt, 2003, 2004) is of importance. In addition to the latent class or grouping variable g, the

hierarchical extension of the LCA assumes that each observation n is characterized by an outcome

sn on a clustering variable s. The clusters identi�ed by this outcome may be schools, classrooms,

or other sampling units representing the hierarchical structure of the data collection. As Vermunt

outlined, the (unobserved) group membership gn is thought of as an individual classi�cation

variable; for two examinees n 6= m there may be two di�erent group memberships, that is, both

gn = gm and gn 6= gm are permissible even if they belong to the same cluster (i.e., sn = sm).

Moreover, it is assumed that the skill distribution depends only on the group indicator g and

no other variable, that is,

P (~a | g, z) = P (~a | g) (5)

for any random variable z. More speci�cally, for the clustering variable s,

P (g) =
S∑

s=1

p(s)P (g | s).

With Equation 5,

P (~a | s) =
∑
g

P (g | s)P (~a | g),

for

P (g | s)P (~a | g) = p(g | s)P (~a | g, s) = P (~a, g | s).

As above for the MGDM, assume that the observed responses ~x depend on the skill pattern ~a

and the group index g only. Then

P (~x | g, s) =
∑
~a

p(~a | g, s)P (~x | ~a, g, s) =
∑
~a

p(~a | g)P (~x | ~a, g) = P (~x | g)

with Equations 1 and 5. Then the marginal distribution of a response pattern ~x in the hierarchical

GDM (HGDM) is given by

P (~x) =
∑
s

p(s)
∑
g

P (g | s)
∑
~a

P (~a | g)P (~x | ~a, g), (6)

where, as before in the MGDM, the p(~a | g) denote the distribution of the skill patterns in group

g, and the p(~x | ~a, g) denote the distribution of the response vector ~x conditional on skill pattern ~a
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and group g. A hierarchical GDM that assumes measurement invariance across clusters and across

groups is de�ned by

P (~x) =
∑
s

p(s)
∑
g

P (g | s)
∑
~a

P (~a | g)P (~x | ~a), (7)

with conditional response probabilities p(~x | ~a) =
∏

i p(xi | ~a) that do not depend on cluster or

group variables.

The increase in complexity of hierarchical GDMs over nonhierarchical versions lies in the fact

that the group distribution P (g | s) depends on the cluster variable s. This increases the number of

group or class size parameters depending on the number of clusters #{s : s ∈ S}. The estimation

of item parameter βix(g)and γik(g) as well as the additional conditional probabilities of group sizes

given clusters p(g | s) and skill patterns given group P (~a | g) is outlined in the next section.

5 Estimation of Hierarchical General Diagnostic Models

The case of �tting models with cluster-dependent response probabilities P (~x | ~a, s) will not be

discussed here. The reason is that a model in which both the skill distributions and the probability

of correct responses depend on the cluster variable does not allow attribution of the variation

of observed responses across clusters to di�erences in skill distributions. Such a model would

essentially assume that items have di�erent di�culty in di�erent clusters. Even though this is a

very empathic view of the world, this does not allow drawing any conclusions involving cluster

di�erences other than clusters are di�erent. Apart from that, the fact that most applications of

hierarchical models o�er only moderate sample sizes within clusters makes the estimation of a

multitude of cluster-speci�c parameters infeasible.

The estimation of GDMs and MGDMs has been outlined in von Davier (in press-a, in press-b).

This approach is extended here to the estimation of HGDMs. The expectation-maximization (EM)

algorithm has been shown to be a suitable one for this kind of estimation problems (Vermunt,

2003), so that other, more computationally costly methods are not necessary. For the most part,

researchers will be concerned with �tting less highly parameterized versions of the HGDM, such as

the models given in Equations 6 and 7.

mdltm software (von Davier, 2005) enables one to estimate MGDMs and GDMs with HGDMs

according to Equations 6 and 7. The extensions to enable estimation of these models were recently

implemented in mdltm based on the research presented in this paper.
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Since the data are structured hierarchically, the �rst step is to de�ne the complete data for

the case of the HGDM. Let S denote the number of clusters in the sample, and let Ns denote the

number of examinees in cluster s, for s = 1, . . . , S. Then

• let xins denote the i-th response of the n-th examinee in cluster s and let ~xns denote the

complete observed response vector of examinee n in cluster s

• let akns denote the k-th skill of examinee n in cluster s and let ~ans denote the skill pattern of

examinee n in cluster s

• let gns denote the group membership of examinee n in cluster s

Note that only the xins are observed, as are the cluster sizes Ns and the number of clusters S. The

akns and gns are unobserved and have to be inferred by making model assumptions and calculating

posterior probabilities such as P (g | s) and P (~a, g | ~x, s).

5.1 Marginal Calculations in Hierarchical General Diagnostic Models

For the complete data (i.e, the observed data ~x in conjunction with the unobserved skill

pro�les ~a and group membership g), the marginal likelihood is

L =
S∏

s=1

Ns∏
n=1

P (~xns,~ans, gns; s),

that is, a sum over cluster-speci�c distributions of the complete data. With the above assumptions,

L =
S∏

s=1

Ns∏
n=1

P (~xns | ~ans, gns)p(~ans | gns)p(gns | s),

which equals

L = L~x × L~a × Lg,

with

L~x × L~a × Lg =

(
S∏

s=1

Ns∏
n=1

P (~xns | ~ans, gns)

)(
S∏

s=1

Ns∏
n=1

p(~ans | gns)

)(
S∏

s=1

Ns∏
n=1

p(gns | s)
)

.

Note that these components may be rearranged and rewritten as

L~x =
S∏

s=1

Ns∏
n=1

I∏
i=1

P (xins | ~ans, gns) =
∏
g

∏
~a

∏
i

∏
x

P (Xi = x | ~a, g)ni(x,~a,g),
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with n(xi, i,~a, g) =
∑

s n(xi, i,~a, g, s) is the frequency of category xi responses on item i for

examinees with skill pattern ~a in group g. Also,

L~a =
S∏

s=1

Ns∏
n=1

p(~ans | gns) =
∏
~a

∏
g

p(~a | g)n(~a;g),

where n(~a; g) is the frequency of skill pattern ~a in group g. Finally,

Lg =
S∏

s=1

Ns∏
n=1

p(gns | s) =
∏
s

∏
g

p(g | s)n(g;s)

holds. The n(g; s) represent the frequency of group membership in g in cluster s.

5.2 Estimation of Cluster-Skill Distributions With the EM Algorithm

Since unobserved latent variables are involved, the EM algorithm (Dempster, Laird, & Rubin,

1977) is a convenient choice for estimating GDMs (von Davier, in press-a) as well as MGDMs (von

Davier, in press-b) and HGDMs. The EM algorithm cycles through the generation of expected

values and the maximization of parameters given these preliminary expectations until convergence

is reached. For details on this algorithm, refer to McLachlan and Krishnan (2000). For the HGDM,

there are three di�erent types of expected values to be generated in the E-step:

1. n̂i(x,~a, g) =
∑

s

∑
n 1{xins = x}P (~a, g | ~xns, s) is the expected frequency of response x to item

i for examinees with skill pattern ~a in group g, estimated across clusters and across examinees

within clusters

2. n̂(~a, g) =
∑

s

∑
n P (~a, g | ~xns, s) is the expected frequency of skill pattern ~a and group g,

estimated across clusters and across examinees within clusters

3. n̂(g; s) =
∑

n P (g | ~xns, s) is the expected frequency of group g in cluster s, estimated across

examinees in that cluster

For the �rst and second type of the required expected counts, this involves estimating

P (~a, g | ~x, s) =
P (~x, s,~a, g)∑

g P (~x, s, g)
=

P (~x | ~a, g)p(~a | g)p(g | s)∑
g P (~x, s, g)

,

with

P (~x, s, g) =
∑
~a

P (~x, s,~a, g) =
∑
~a

P (~x | ~a, g)p(~a | g)p(g | s)
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for each response pattern ~xns, for s = 1, . . . , S and n = 1, . . . , Ns. For the third type of expected

count, use

p(g | ~x,s) =
∑
~a

P (~a, g | ~x, s),

which is equivalent to

p(g | ~x, s) =
P (~x, s, g)∑
g P (~x, s, g)

=
∑

~a P (~x | ~a, g)p(~a | g)p(g | s)∑
g [
∑

~a P (~x | ~a, g)p(~a | g)p(g | s)]
.

This last probability then allows one to estimate the class membership g given both the observed

responses ~x and the known cluster membership s. The utility of the clustering variable may be

evaluated in terms of increase of the maximum a posteriori probabilities p(g | ~x, s) over p(g | ~x).

If the clustering variable s is informative for the classi�cation g, a noticeable increase of the

maximum posterior probabilities should be observed. The improvement should also be seen in

terms of the marginal log-likelihood if s in informative for g.

6 An Application to TOEFL R© iBT Datasets

Simulated data have advantages, such as the truth (i.e., the set of generating values) is known

and comparisons of di�erent levels of model complexity and misspeci�cation can be made on the

basis of known deviations from the true model. The disadvantage is that simulated data are by

origin arti�cial, so that the impact of model assumptions on model-data �t can only be studied

under often less than realistic settings. The accuracy of parameter recovery using simulated data

has been studied with quite satisfactory results for the GDM by von Davier (in press-a) using

�at item response data with no missing values, and by Xu and von Davier (2006) for sparse

matrix samples of item responses as collected in national and international surveys of educational

outcomes.

The current exposition focuses on the comparison of results based on two administration of the

TOEFL R© iBT. The target of inference is the stability of estimates relating to clustering variables

given by language group. The analyses carried out are independent scalings of two TOEFL iBT

administrations for which Q-matrices were produced. Von Davier (press-a) pointed out that the

GDM applied to TOEFL data resulted in highly correlated skill variables, and found that a

two-dimensional, two-parameter logistic (2PL) IRT model across reading and listening domains

provided a more parsimonious data description. However, the eight-skill model across reading and
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listening domains was the subject of further investigation by TOEFL experts, so that this model is

adopted for the analyses with the hierarchical GDM.

In a �rst step, the HGDM was compared to the GDM without hierarchical extension, both

adopting the same Q-matrix based on eight mastery/nonmastery skills for the February and

November administrations of the TOEFL iBT. The HGDM was estimated according to Equation

7. In other words, measurement invariance was assumed across mixture components so that only

the skill distribution could vary across clusters and the response probabilities P (~x | ~a) depended on

the skill pro�le only, not on cluster s or mixture component g. Table 1 shows the skill correlations

for the February administration, as well as the marginal skill mastery probabilities for the GDM.

Table 2 shows the same information for the November administration.

Table 1

Skill Correlations and Marginal Probabilities of Skill Mastery for the February

Administration Based on the Nonhierarchical Eight-Skill General Diagnostic Model

Across 76 Items Assuming Four Listening and Four Reading Skills

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8

Skill 1 1.00 0.76 0.73 0.80 0.75 0.60 0.69 0.57

Skill 2 1.00 0.83 0.81 0.65 0.64 0.67 0.58

Skill 3 1.00 0.75 0.68 0.69 0.70 0.63

Skill 4 1.00 0.61 0.55 0.58 0.45

Skill 5 1.00 0.79 0.76 0.66

Skill 6 1.00 0.86 0.80

Skill 7 1.00 0.80

Skill 8 1.00

P(master) 0.63 0.61 0.57 0.69 0.54 0.46 0.49 0.39

The correlations range between 0.67 and 0.86 for skills of the same domain (i.e., among the

four reading or four listening skills) and are slightly lower across the domains as expected. For

correlations between one of the four reading skills and one of the four listening skills, the range is

0.56 to 0.77. These are still substantial correlations, which is due to the fact that overall reading

and listening domains themselves are highly correlated. A two-dimensional 2PL IRT model
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Table 2

Skill Correlations and Marginal Probabilities of Skill Mastery for the November

Administration Based on the Nonhierarchical Eight-Skill General Diagnostic Model

Across 76 Items Assuming Four Listening and Four Reading Skills

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8

Skill 1 1.00 0.79 0.81 0.67 0.62 0.62 0.57 0.59

Skill 2 1.00 0.86 0.68 0.60 0.61 0.56 0.59

Skill 3 1.00 0.70 0.64 0.63 0.58 0.60

Skill 4 1.00 0.71 0.67 0.77 0.67

Skill 5 1.00 0.82 0.78 0.80

Skill 6 1.00 0.85 0.72

Skill 7 1.00 0.86

Skill 8 1.00

P(master) 0.63 0.62 0.62 0.44 0.48 0.47 0.40 0.43

estimated with the mdltm software (von Davier, 2005) results in estimated correlations of between

the reading and listening domains of 0.81 and 0.85 for the two administrations.

When estimating the HGDM for the two administrations, the resulting statistics di�er from

those from the GDM in two ways. First, there are two skill distributions P (~a | c) estimated, one for

each of two mixture components c = 1 and c = 2, representing the largest of the between-cluster

di�erences (here language group) that can be expected. Then cluster-skill distributions are formed

by a cluster-speci�c (a language group, s) proportion P (c | s), or the probability of belonging to

each of these skill distributions. Note that the TOEFL iBT datasets used here are composed of

students from various language groups, and some of these languages are represented by only a few

students. Since every cluster receives a di�erent set of P (c | s), one should consider collecting

students representing very small language groups into larger clusters to avoid numerically unstable

estimates of proportions for these small groups.

The log likelihood for the eight-skill GDM and HGDM are reported in Table 3 together with

the number of estimated parameters and the average log likelihood per observation. Note that

the November administration included a larger number of language groups, some of which were of
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rather small size. This led to a larger increase in the number of estimated parameters from GDM

to HGDM for the November administration than for the February administration.

Table 3

Log Likelihood and Number of Parameters for the Eight-Skill General Diagnostic

Model and Hierarchical General Diagnostic Model for Both Administration

Log likelihood Parameters Average likelihood

Independence -43.24

FEB GDM -164435.20 194 -38.83

FEB HGDM -163883.00 318 -38.70

FEB 2PL2 -160799.26 160 -37.97

FEB H2PL2 -160297.34 251 -37.85

Independence -41.92

NOV GDM -196009.88 195 -37.44

NOV HGDM -195480.19 337 -37.34

NOV 2PL2 -191431.64 160 -36.57

NOV H2PL2 -190905.63 269 -36.47

The average likelihood per response pattern is improved by a small amount when including

the language group as clustering variable. However, compared to the gain by assuming the GDM

rather than independence of all observed variables, the gain in going from GDM to HGDM seems

comparably small. For comparisons, the loglikelihood, parameters, and average-response pattern

likelihoods are also presented for the two-dimensional 2PL/GPC model, which are estimated as a

nonhierarchical model (2PL2) and a hierarchical model (H2PL2), and are also given in the table.

As von Davier (in press-a) reported, the two-dimensional 2PL IRT model is a more parsimonious

description of the TOEFL iBT pilot data than the eight-skill model, a result that holds up for both

the February and the November administrations. The eight-skill model, however, is the focus of an

ongoing methods comparison by TOEFL researchers, so it is adopted for subsequent comparisons

between GDM and HGDM here without any comparisons to the two-dimensional 2PL/GPCM

model.

Table 4 shows the two resulting marginal skill distributions for the February administration,
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and Table 5 shows the same information for the November administration. For both

administrations, the mixture component C1 shows much lower mastery probabilities than

component C2. The mixture component C2 is characterized by high probabilities of mastery of

all eight skills for both administrations. The marginal sizes of the two components πC2,F eb and

πC2,Nov for the two administrations di�er somewhat; there is about 42% in the high pro�ciency

class in November, whereas there is about 51% in February.

Table 4

Marginal Skill Distributions for the Two Mixture Components C1 and C2 in the

February Eight-Skill Hierarchical General Diagnostic Model With Skill Mastery

Probabilities Given and Marginal Sizes of the Mixture Components Are πC1 = 0.49

and πC2 = 0.51

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8

P(master|C1) 0.33 0.28 0.16 0.38 0.15 0.05 0.13 0.06

P(master|C2) 0.92 0.93 0.96 0.97 0.94 0.85 0.85 0.72

Table 5

Marginal Skill Distributions for the Two Mixture Components C1 and C2 in the

November Eight-Skill Hierarchical General Diagnostic Model With Skill Mastery

Probabilities Given and Marginal Sizes of the Mixture Components Are πC1 = 0.58

and πC2 = 0.42

Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8

P(master|C1) 0.40 0.38 0.38 0.16 0.16 0.11 0.04 0.09

P(master|C2) 0.97 0.95 0.94 0.90 0.93 0.98 0.93 0.91

The two mixture components C1 and C2 represent the largest possible di�erences between

clusters (language groups) in the sample, since each cluster receives an estimate of a proportion

P (C2 | s)�and with that, implicitly, P (C1 | s) = 1− P (C2 | s)�of members estimated to belong

in the high versus low pro�ciency components C2 and C1. Since the mastery probabilities of all

skills are much higher in C2 compared to C1 for both administrations, this proportion can be
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interpreted as the proportion of examinees in each language group who are highly pro�cient with

respect to the assessment items re�ected in the skill de�nitions. These proportions can be studied

across administrations, so that the variation (or the lack thereof) of the proportion of highly

pro�cient students in the language groups becomes a target of inference. This target delivers

information about how well-aligned the TOEFL assessment is for the di�erent language groups

represented in the sample.

Figure 1 shows the proportion of students falling in the high performing class for the November

and February administrations. The table contains only those language groups for which at least

10 students were observed for each administration of the TOEFL. It can be seen that the class

sizes vary across administrations but are relatively stable when languages are compared. For

example, the proportion of students with a Chinese (CHI) language background is smaller than

the proportion of students with a French (FRE) language background (see the appendix for the

language-speci�c class sizes). The correlation between the two high pro�cient class-size estimates

across 37 countries is 0.787. When a weighted correlation (with weights de�ned as the geometric

mean of the two language�group-speci�c sample sizes, one for each administration) across all 116

language groups is calculated, the correlation between the class-size estimates is 0.89.

The consistency of the language�group-proportion estimates and the substantial correlation

of these estimates across the two administrations are evident from Figure 1. For estimates of the

skill-mastery probabilities of language groups, the P (C2 | s) and the mixture-component skill

probabilities can be combined, resulting in

P (~a | s) =
C2∑

c=C1

P (~a | c)P (c | s)

for the language�group-speci�c skill distribution. As an illustration, the marginal skill mastery

probabilities for the November and February administrations have been calculated for the CHI and

Spanish (SPA) language groups. Table 6 shows the language�group-speci�c marginal skill mastery

probabilities for CHI and SPA for the two administrations. It can be seen that the skill mastery

probabilities range between 0.54 and 0.69 for the listening skills in the Spanish language sample

and between 0.40 and 0.58 for the Chinese language sample for the November administration. For

the reading skills, the mastery probabilities range between 0.32 and 0.41 for the Chinese language

sample and between 0.49 and 0.55 for the Spanish language sample.

It is important to note that the language-group proportions as well as the estimates of
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Figure 1 Plot of the high pro�ciency class-size correspondence across two administra-

tions of the TOEFL iBT based on 37 language groups for which sample sizes exceeded

10 in both administrations.

skill-mastery probabilities will vary somewhat over the administrations, even though the ordering

of language�group-speci�c mastery estimates may stay stable. The estimates presented here are

based on 4 + 4 skills with high correlations within the reading and listening domains as well as

across. Therefore, a similar analysis may be tried with a model that joins the four postulated

skills per domain into one overarching dimension by estimating a two-dimensional model instead.

However, for the purpose of providing statistics on skill mastery for ongoing TOEFL research, it

was necessary in the current study to use the expert-generated eight-skill matrix. As a result, the

language�group-speci�c pro�les of skill mastery will, due to the nature of the highly correlated

skills, mostly re�ect overall di�erences in the pro�ciency level of the applicant samples across

language groups.

7 Conclusions

This paper introduces a hierarchical version of the GDM (von Davier, in press-a) and shows

the e�ect of clustering through a comparison of results from two administrations of the TOEFL
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Table 6

Language�Group-Speci�c Mastery Probabilities Exempli�ed Using the November and

February Administrations Based on Mixing Components and the Chinese and

Spanish Language Groups

CHI and SPA in Nov Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8

C1: 0.68 (CHI), 0.49 (SPA) 0.40 0.38 0.38 0.16 0.16 0.11 0.04 0.09

C2: 0.32 (CHI), 0.51 (SPA) 0.97 0.95 0.94 0.90 0.93 0.98 0.93 0.91

P(SKILL|CHI) 0.58 0.56 0.56 0.40 0.41 0.39 0.32 0.35

P(SKILL|SPA 0.69 0.67 0.67 0.54 0.55 0.55 0.49 0.51

CHI and SPA in Feb Skill 1 Skill 2 Skill 3 Skill 4 Skill 5 Skill 6 Skill 7 Skill 8

C1: 0.79 (CHI), 0.33 (SPA) 0.33 0.28 0.16 0.38 0.15 0.05 0.13 0.06

C2: 0.21 (CHI), 0.67 (SPA) 0.92 0.93 0.96 0.97 0.94 0.85 0.85 0.72

P(SKILL|CHI) 0.45 0.42 0.33 0.50 0.32 0.22 0.28 0.20

P(SKILL|SPA) 0.63 0.61 0.57 0.68 0.55 0.46 0.50 0.40

iBT assessment when estimating language�group-speci�c pro�ciencies. The HGDM provides

reliable estimates of proportions of high pro�ciency across language groups. The correlation of the

estimates is 0.78 for the 37 largest language groups not weighted by sample size, and it increases

to 0.89 when all language groups that are present in both administrations are weighted according

to their pooled sample size.

If the clustering is informative as it seems to be in the TOEFL case, the prediction of

pro�ciency can potentially be improved, as seen in the slight increase of average log-likelihood

(see Table 3). The clustering, or language-group membership in the analyses presented here, acts

as ancillary information, so that the �t of the HGDM to the observed cognitive item responses

can be compared to models without a clustering variable. The results presented here indicate

that a mixture of di�erent class-speci�c skill distributions is a useful tool in conjunction with

cluster-speci�c mixing proportions to model the dependency of skill distribution on a clustering

variable. The approach estimates conditional skill distributions across the whole sample, which, in

the parameterization chosen, represent di�erent expected skill pro�les in unknown subpopulations
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of a mixture distribution. The cluster-speci�c mixing proportions then estimate the composition

of the clusters�here language groups�based on the assumption that the mixture-distribution

subpopulations are represented in varying levels across clusters. In this example, the mixture

components turned out to be ordered pro�ciency classes, due to the nature of the eight skills

applied, which are known to be substantially correlated.

The estimated proportions, more speci�cally the variance of these proportions across

clusters, and the consistency of identi�ed proportions across administrations can provide valuable

information about the sources of pro�ciency variation in hierarchically organized data. The HGDM

provides a tool to study such variations in the context of item response models, latent class models,

and diagnostic models for pro�le scoring.
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Appendix

Proportions of High Pro�ciency Class Membership by Country for

the February and November Administration of the TOEFL iBT for 37

Language Groups for Which Sample Sizes Exceeded 10 in Both Administrations

Lang. N(FEB) P(C2|FEB) N(NOV) P(C2|NOV)

CHI 609 0.2046 657 0.3185

VIE 33 0.0883 92 0.2681

KOR 604 0.2148 832 0.2094

RUM 32 0.8560 35 0.5611

FRE 467 0.7818 357 0.6850

URD 29 0.3433 43 0.5167

GER 458 0.9067 433 0.8412

POL 27 0.8082 58 0.4816

ITA 378 0.6154 331 0.4629

IND 27 0.1886 45 0.3673

SPA 294 0.6712 483 0.5125

TAM 21 0.6182 26 0.6456

JPN 245 0.2847 410 0.1344

BEN 19 0.4665 19 0.6505

ARA 119 0.3010 187 0.1382

BUL 19 0.7412 19 0.5115

TGL 82 0.5033 111 0.3377

HEB 19 0.8938 28 0.6925

RUS 74 0.7192 136 0.5592

MAL 18 0.8636 25 0.6301

(table continues)
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Table (continued)

Lang. N(FEB) P(C2|FEB) N(NOV) P(C2|NOV)

TEL 60 0.6326 43 0.5539

UKR 15 0.4151 15 0.3913

POR 59 0.7922 73 0.5308

ALB 14 0.4363 18 0.6206

ENG 58 0.5389 66 0.5206

CZE 13 0.6163 13 0.3456

THA 48 0.1178 91 0.1669

IBO 12 0.8651 13 0.4731

HIN 48 0.7168 70 0.7504

PAN 11 0.3585 15 0.3225

TUR 48 0.3000 76 0.3310

N/A 11 0.7544 20 0.6363

FAS 43 0.4183 58 0.2420

YOR 10 0.9075 11 0.7347

GUJ 37 0.1997 40 0.3770

AMH 10 0.1595 23 0.2089
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